Sketch

Release 0.14.2

Daniel Baker

CONTENTS::

	I Getting Started				
	Installation (Python)				
	2 Installation (C++)				
	Features				
2	Modules				
	Additional utilities: sketch.util				
	Computing optimal a and b				
	2 Indices and tables				

CHAPTER

ONE

GETTING STARTED

Sketch has a range of sketch data structures implemented. All of them are available in C++, but only a subset of functionality has been exposed to Python. This documentation is primarily for the Python interface.

1.1 Installation (Python)

One-line installation:

```
git clone --recursive https://github.com/dnbaker/sketch && cd sketch/python && python3_ 

→setup.py build_ext -j4 && python3 setup.py install
```

At this point, you will simply import sketch from python:

```
import sketch
HLL = sketch.hll.hll
h = HLL(10)
for i in range(10000): h.addh(i)
print("Estimated cardinality: %f" % h.report())
```

1.2 Installation (C++)

You don't. Use sketch as a header-only library, but clone recursively.

1.3 Features

- 1. Sketch structure bindings:
 - 1. Bloom Filter
 - 2. HyperLogLog
 - 3. B-bit minhash
 - 4. Set Sketch
- 2. Distance calculation functions
- 3. Miscellaneous
 - 1. fastmod/fastdiv for integer reductions

- 2. ngram hashing
- 3. fast hamming space distance calculations

CHAPTER

TWO

MODULES

There are separate modules for each sketch structure for which there are bindings.

- sketch.hll, providing HyperLogLog and comparison, and serialization functions
- sketch.bf, providing Bloom Filters and comparison, and serialization functions
- sketch.bbmh, providing b-bit minhash implementation + comparison, and serialization functions
- sketch.setsketch, providing set sketch + comparison, and serialization functions

For each of these, the module provides construction - either taking parameters or a path to a file. Each of these can be written to and read from a file with .write() and a constructor.

They can be compared with each other with member functions, or you can calculate comparison matrices via **sketch.util.jaccard_matrix**, **sketch.util.containment_matrix**, **sketch.util.union_size_matrix**, **sketch.util.intersection_matrix**, all of which are in the util module.

Additionally, there are utilities for pairwise distance calculation in the *util* module.

4 Chapter 2. Modules

ADDITIONAL UTILITIES: SKETCH.UTIL

fastdiv/fastmod:

- Python bindings for fastdiv/fastmod; See https://arxiv.org/abs/1902.01961
- fastdiv_ and fastmod_ are in-place modifications, while the un-suffixed returns a new array
- count eq
 - Compute # of equal registers between two 1-d numpy arrays.
- ccount_eq
 - Compute row-pair-wise equal register counts between two 2-d numpy arrays.
- pcount_eq
 - Compute row-wise upper triangular distance matrix for equal register counts for 1 2-d numpy array.
- shsisz
- Computes intersection size between two sorted hash sets.
- hash
- hashes strings
- hash_ngrams
 - takes a list of strings, and then computes

usage

3.1 Computing optimal a and b

For lossy compression via quantization, _optimal_ab_ computes the parameter values for best using hash space.

3.2 Indices and tables

- · genindex
- · modindex
- · search